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Abstract- In this study, distributed energy resources 

scheduling problem of the set of smart homes (SHs) is 

investigated considering their cooperation with their neighbors 

and applying a stochastic model predictive control (MPC). 

Herein, every SH has a variety of sources and each SH is able to 

transact power with the local distribution company (DISCO) 

through the grid and with other connected SHs. The challenges of 

problem include modeling the technical and economic constraints 

of sources and dealing with the variability and uncertainties 

concerned with the power of photovoltaic (PV) panels that make 

the problem a mixed-integer nonlinear programming (MINLP), 

dynamic, and stochastic optimization problem. In order to handle 

the variability and uncertainties of problem, a stochastic MPC is 

applied. The numerical study demonstrates that cooperation of 

SHs in the energy scheduling problem has a high potential for 

minimizing operation cost of SHs. 

Index Terms- Cooperative distributed energy scheduling, smart 

home (SH), and stochastic model predictive control (MPC). 
 

I. INTRODUCTION 

To mitigate the energy security and environmental issues 

caused by burning fossil fuels in the thermal power plants, 

installing renewables as the cost-effective and carbon-free 

source of energy is proposed [1]. Building sector has a huge 

potential for decreasing cost of energy use, increasing energy 

efficiency, and decreasing the carbon footprint by including 

renewables [2]. The U.S. Energy Information Administration 

(EIA) estimates that 37% of end use electricity in the U.S. is 

consumed in the residences [3]. In addition, the buildings are 

responsible for 36% of the carbon emissions in the U.S. [3-4].  

Advances in the technology are able to change a home into a 

smart home (SH) that allows the occupant to control the 

energy consumption of the home [5-6]. SHs are equipped with 

devices and sources that coordinate with one another to 

achieve a common set of goals that benefit the occupants [7]. 

They are able to connect to each other, share their energy 

sources, and exchange electricity. In other words, each SH can 

provide energy to other SHs and purchase energy from other 

SHs. Also, every SH can deliver its extra energy to the grid 

and sell it to the local distribution company (DISCO), but at a 

lower price compared to the purchasing price [8].  

In this study, a cooperative distributed energy scheduling 

approach is applied to solve this problem for the set of the 

SHs. In this method, every SH takes into account its available 

energy resources such as DG, PV panels, and battery of plug-

in electric vehicle (PEV), collects the information of the 

available energy of the connected SHs and their proposed 

prices, and conducts the energy scheduling in a cooperative 

distributed way. However, there are several challenges in 

solving the problem listed below. 

 PV panels as the intermittent source of energy have the 

feature of uncertainty in their power that makes the energy 

scheduling problem a stochastic optimization problem. 

 In addition, the power of PV panels has a large degree of 

variability that change the energy scheduling problem into a 

dynamic (time-varying) optimization problem.  

 There are several economic and technical constraints for the 

DG and the battery of the PEV that make the problem a 

mixed integer nonlinear programming (MINLP) problem. 

The studies presented in [9-13] have investigated energy 

scheduling problem for the set of SHs. However, in [9-11] and 

[13], the problem is not a cooperative distributed energy 

scheduling problem, since the cooperation of the SHs have 

been disregarded and the problem has been solved by a 

centralized approach. However, the centralized optimization 

techniques have the so-called curse of dimensionality when 

the problem is large and complex [14]. In other words, the 

computational complexity and computation latency of the 

problem grow exponentially when the size of the problem is 

increased. Therefore, the centralized optimization is not 

applicable when the problem has a large number of variables 

or the state of the problem is changed dynamically. In 

addition, the privacy of the SHs might be jeopardized in a 

centralized optimization approach because all the economic 

and technical information of the SHs must be available for the 

control center [15].  

In [9] and [11-12], the presence of different energy 

resources have not been modeled in the problem. In other 

words, renewable energy resources have been disregarded in 

[9] and [11-12], energy storage has not been modeled in [9] 

and [12], and presence of DG has not been taken into 

consideration in [9]. Also, the defined energy scheduling 

problem does not have any dynamic and adaptive 

characteristics in [10-11]. In other words, the problem has 

been optimized once for the whole operation period (one day), 

while the optimization of the problem must be updated at 

every time step (e.g., every hour, every five minutes, or …) 

due to the time-varying feature of the power of renewables or 

load demand. In this study, the aforementioned challenges are 

addressed by applying the proposed techniques presented in 

Section II. In Section III, the problem is formulated. The 

numerical studies are done in Section IV, and Section V 

concludes the paper. 
 

II. PROPOSED TECHNIQUE 

A. Cooperative Distributed Energy Scheduling 

Fig. 1 illustrates the concept of the cooperative distributed 

optimization for a system with five SHs. As can be seen, each 

SH electrically connects to a number of other SHs for energy 

transaction. In other words, every SH can provide energy to its 



 

connected SHs and also purchase energy from them. Herein, it 

is assumed that every SH can exchange the information just 

with its connected SHs. The information includes the value of 

available energy and price for transacting power between two 

SHs.  

Based on the concept of the introduced approach for the 

cooperative distributed energy scheduling, at every time step, 

in parallel to other SHs, every SH randomly selects its 

counterpart (one of the connected SHs), and solves its own 

energy scheduling problem considering the received 

information from the selected cooperator. Then, every SH 

randomly changes its cooperator and share the updated 

information with one another. This process is repeated several 

times until no significant improvement is observed in the 

value of the objective function of each SH. 

 

B. Stochastic Model Predictive Control (MPC) 

1) Stochastic approach 

The stochastic approach includes forecasting the solar 

irradiances and modeling the uncertainty of the predictions by 

defining some effective scenarios.  

a) Forecasting the value of the uncertain states  

The uncertain states of the problem include the values of 

solar irradiances (𝜌) over the optimization time horizon which 

are predicted using the neural network available in MATLAB. 

The historical values of the solar irradiances are entered into 

the neural network to predict the values of the solar 

irradiances over the optimization time horizon. The historical 

data of the solar irradiances are the real solar irradiances 

recorded in Clemson, SC 29634, USA in July 2014. About 

70% of the data is used for training the neural network and 

30% of the data is used for validation and testing. The set of 

the predicted solar irradiances (�̃� 
 ) can be presented as (1). As 

can be seen, the duration of forecasting time horizon is 12 

time steps (𝑛𝜏 is equal to 12). 

               {�̃�𝑡+1
 , … , �̃�𝑡+𝑛𝜏

 }, ∀𝑡 ∈ 𝑇, 𝑇 = {1,⋯ ,288}               (1) 

 
Fig. 1. Applying cooperative distributed optimization on a system with five 

SHs. 

b) Modeling uncertainties of the forecasted data  

Fig. 2 (a) illustrates the predicted and measured solar 

irradiances for the current time step (𝑡) and past time steps 

(1, 2,⋯ , 𝑡 − 1), and also the predicted solar irradiances for 

every time step of the optimization time horizon (𝑡 + 1,⋯ , 𝑡 +
𝑛𝜏). As can be seen, the previously forecasted solar irradiances 

(�̃� 
 ) are compared with the real solar irradiances (measured 

data) and the value of error of the predictions are calculated. 

Then, as can be seen in Fig. 2 (b), redundancy of the 

prediction errors respect to the value of the prediction errors 

are plotted on a chart. After that, an appropriate probability 

density function is found for the prediction errors, as can be 

seen in Fig. 2 (c). It is observed that the predication errors can 

be nearly fitted on a Normal probability density function with 

an appropriate standard deviation (𝜎 
𝐸𝑟). Finally, the curve is 

divided into four areas to define four distinct values for the 

prediction inaccuracy with occurrence probabilities about 

15.87%, 34.13%, 34.13%, and 15.87% related to −2𝜎 
𝐸𝑟, 

−𝜎 
𝐸𝑟, 𝜎 

𝐸𝑟, and 2𝜎 
𝐸𝑟, respectively. The value of 𝜎 

𝐸𝑟 is 

updated in the next predictions in the optimization procedure 

of the problem (1, 2,⋯ , 𝑡,⋯ , 288).  

Herein, four scenarios (𝑠 ∈ 𝑆, 𝑆 = {1, … , 𝑛𝑠}, where 𝑛𝑠 is 4) 

for solar irradiance corresponding to 𝜌ℎ,𝑡,𝑠
 ∈ {�̃�ℎ,𝑡

 −

2𝜎 
𝐸𝑟 , �̃�ℎ,𝑡

 − 𝜎 
𝐸𝑟 , �̃�ℎ,𝑡

 + 𝜎 
𝐸𝑟 , �̃�ℎ,𝑡

 + 2𝜎 
𝐸𝑟} with occurrence 

probabilities (Ω 
 
 
𝑃𝑉) 15.87%, 34.13%, 34.13%, and 15.87%, 

respectively, are considered. In other words, at every time 

step, the problem is solved four times and every time, one of 

the above mentioned values are considered for the value of the 

solar irradiance. 

 
Fig. 2. Modeling uncertainties of the forecasted data. 

 

2) Model Predictive Control 

MPC as a well-established technique in control engineering 

is capable of controlling a multi-variable constrained system 

by taking the control actions from the solution of an online 

optimization problem and repetitively predicting the system 

behavior [16]. The concept of the single-time scale MPC is 

illustrated in Fig. 3 [17]. As can be seen, at every time step (𝑡), 
the optimization time horizon (𝑡 + 1,⋯ , 𝑡 + 𝑛𝜏) is updated, 

and then the value of the forward-looking objective function 

(𝐹𝑡
𝐹𝐿) is minimized; however, just the variables of the next 

time step (𝑡 + 1) are accepted as the decision variables. The 

forward-looking objective function is sum of the values of the 

time step objective functions (𝐹𝑡
 ) over the optimization time 

horizon, as can be seen in (2). Next, the current time step is 

𝑡 + 1 and the updated optimization time horizon is 𝑡 +
2,⋯ , 𝑡 + 𝑛𝜏 + 1. Now, the value of the updated forward-

looking objective function (𝐹𝑡+1
𝐹𝐿 ) is minimized and the 

variables of the next time step (𝑡 + 2) are accepted as the 

decision variables. This procedure that demonstrates the 

dynamic and adaptability characteristics of MPC is repeated 

for every time step of the operation period (one day).  

                                        𝐹𝑡
𝐹𝐿 =∑𝐹𝑡+𝜏

 

𝑛𝜏

𝜏=1

                                      (2) 

C. Optimization Tool 

The energy scheduling problem of the SH is a MINLP 

problem. In this study, GA-LP technique as the combination 

of genetic algorithm (GA) and Linear Programming (LP) is 

applied to solve the energy scheduling problem of the SH. 

Other optimization algorithms could be used instead of GA; 

however, the capability of GA for parallel optimization and its 



 

competence in complex and nonlinear environments are the 

main reasons for the utilization of GA [18].  

 
Fig. 3. The concept of the single-time scale model predictive control [17]. 

 

Herein, the GA is applied to address the nonlinearity of the 

problem and the LP is applied to quickly find the globally 

optimal solution. Moreover, the GA and LP techniques deal 

with the discrete variables (𝑥 
𝐷𝐺 , 𝑥 

𝑃𝐸𝑉) and the continuous 

variables (𝑃 
𝐷𝐺 , 𝑃 

𝑃𝐸𝑉 , 𝑃 
𝐺𝑟𝑖𝑑) of the problem, respectively.  

The discrete variables of the problem handled by the GA 

include the status of the DG (𝑥 
𝐷𝐺) and the status of the battery 

of the PEV (𝑥 
𝑃𝐸𝑉) in every time step of the optimization time 

horizon, as can be seen in (3). Herein, the values of “0” and 

“1” for the 𝑥 
𝐷𝐺 mean “off” and “on”, respectively. Also, the 

values of “-1”, “0”, and “1” for the 𝑥 
𝑃𝐸𝑉 mean charging, idle, 

and discharging, respectively. 

                                {
𝑥𝑡
𝐷𝐺 ⋯ 𝑥𝑡+𝑛𝜏

𝐷𝐺

𝑥𝑡
𝑃𝐸𝑉 ⋯ 𝑥𝑡+𝑛𝜏

𝑃𝐸𝑉 } , ∀𝑡 ∈ 𝑇                      (3) 

Based on this, the dimensions of the defined chromosome in 

the applied GA are 𝑛𝜏 × 3,  as can be seen in Fig. 4. Herein, 

one bit (gene) for indicating status of the DG (“0” for “off” 

and “1” for “on”) and two bits for indicating the status of the 

battery of the PEV (“00” and “10” for idle, “01” for 

discharging, and “11” for charging) are considered.  

 
Fig. 4. The structure of the defined chromosome in the applied GA. 

In addition, the continuous variables of the problem 

optimized by the LP include the value of power of the DG 

(𝑃 
𝐷𝐺), the value of generated or consumed power of the 

battery of the PEV (𝑃 
𝑃𝐸𝑉), the value of transacted power with 

the DISCO through the electricity grid (𝑃 
𝐺𝑟𝑖𝑑), and the value 

of transacted powers with the connected SHs (𝑃ℎ,𝑡,ℎ′
𝑁  , ∀ℎ ∈

𝐻′) in every time step of the optimization time horizon, as can 

be seen in (4).  

{
 
 
 

 
 
 
𝑃ℎ,𝑡
𝐷𝐺

𝑃ℎ,𝑡
𝑃𝐸𝑉

𝑃ℎ,𝑡
𝐺𝑟𝑖𝑑

⋯
⋯
⋯

𝑃ℎ,𝑡+𝑛𝜏
𝐷𝐺

𝑃ℎ,𝑡+𝑛𝜏
𝑃𝐸𝑉

𝑃ℎ,𝑡+𝑛𝜏
𝐺𝑟𝑖𝑑

𝑃ℎ,𝑡,1
𝑁

⋮
𝑃ℎ,𝑡,𝑛ℎ′
𝑁

⋯
⋯
⋯

𝑃ℎ,𝑡+𝑛𝜏,1
𝑁

⋮
𝑃ℎ,𝑡+𝑛𝜏,𝑛ℎ′
𝑁

}
 
 
 

 
 
 

, ∀ℎ ∈ 𝐻, 𝐻′ = {1,… , 𝑛ℎ′}, ∀𝑡 ∈ 𝑇 (4) 

 

III. PROBLEM FORMULATION 

A.  Objective Function 

The goal of every SH is minimizing the value of the 

stochastic forward-looking objective function over the 

optimization time horizon (𝔽 
𝐹𝐿) subject to the constraints. As 

can be seen in (5), the value of the stochastic forward-looking 

objective function is determined by summing the values of the 

forward-looking objective functions (𝐹 
𝐹𝐿) weighted by the 

corresponding occurrence probability (Ω 
 
 
𝑃𝑉). In other words, 

the value of the stochastic forward-looking objective function 

is equal to the expected value of the forward-looking objective 

function. The forward-looking objective function (𝐹ℎ,𝑡,𝑠
𝐹𝐿 =

∑ 𝐹ℎ,𝑡+𝜏,𝑠
 𝑛𝜏

𝜏=1 ) has been presented in (2). The time step 

objective function (𝐹 
 ) that includes different cost and income 

terms is presented in (6). These terms include fuel cost of the 

DG (𝐶 
𝐹_𝐷𝐺), carbon emissions cost of the DG (𝐶 

𝐸_𝐷𝐺), start up 

cost of the DG (𝐶 
𝑆𝑇𝑈_𝐷𝐺), shut down cost of the DG 

(𝐶 
𝑆𝐻𝐷_𝐷𝐺), switching cost of the battery of the PEV (𝐶 

𝑆𝑊_𝑃𝐸𝑉), 

cost or benefit due to power transactions with the grid 

(𝑃 
𝐺𝑟𝑖𝑑 × �́� 

𝐷𝐼𝑆𝐶𝑂), and cost or benefit because of power 

transactions with the connected SHs (∑ 𝑃 
𝑁 × 𝜋 

𝑁 
 ). 

         𝑚𝑖𝑛 𝔽ℎ,𝑡
𝐹𝐿 = 𝑚𝑖𝑛∑𝐹ℎ,𝑡,𝑠

𝐹𝐿 × Ω 
 
𝑠
𝑃𝑉

 

𝑠∈𝑆

, ∀ℎ ∈ 𝐻,∀𝑡 ∈ 𝑇      (5) 

𝐹ℎ,𝑡,𝑠
 =

{
 
 
 

 
 
 

[𝐶ℎ,𝑡
𝐹_𝐷𝐺] + [𝐶ℎ,𝑡

𝐸_𝐷𝐺]

+[(1 − 𝑥ℎ,𝑡−1
𝐷𝐺 ) × 𝑥ℎ,𝑡

𝐷𝐺 × 𝐶ℎ
𝑆𝑇𝑈_𝐷𝐺]

+[𝑥ℎ,𝑡−1
𝐷𝐺 × (1 − 𝑥ℎ,𝑡

𝐷𝐺) × 𝐶ℎ
𝑆𝐻𝐷_𝐷𝐺] +

[�́�ℎ,𝑡
𝑃𝐸𝑉 × 𝐶ℎ

𝑆𝑊_𝑃𝐸𝑉] + [𝑃ℎ,𝑡
𝐺𝑟𝑖𝑑 × �́�𝑡

𝐷𝐼𝑆𝐶𝑂]

+ [ ∑ 𝑃ℎ,𝑡,ℎ′
𝑁 × 𝜋ℎ,𝑡,ℎ′

𝑁

 

ℎ′∈𝐻′

]
}
 
 
 

 
 
 

, ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇(6) 

The switching of the battery of PEV (�́� 
𝑃𝐸𝑉) is determined 

using (7). If the status of the battery in the current time step 

(𝑥𝑡
𝑃𝐸𝑉) is the same as the previous time step (𝑥𝑡−1

𝑃𝐸𝑉), the 

switching indicator is zero; otherwise, it is one.  

         �́�ℎ,𝑡
𝑃𝐸𝑉 = {

0    𝑥ℎ,𝑡−1
𝑃𝐸𝑉 = 𝑥ℎ,𝑡

𝑃𝐸𝑉

1    𝑥ℎ,𝑡−1
𝑃𝐸𝑉 ≠ 𝑥ℎ,𝑡

𝑃𝐸𝑉 , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇               (7) 

In (8), 𝜑 is the coefficient applied by the local DISCO to 

determine the price of selling power to the DISCO by a SH 

based on the net energy metering (NEM) plan [8]. In the NEM 

plan, every SH can deliver its extra power to the grid and sell 

it to the local DISCO at a lower price compared to the 

purchasing price from the local DISCO [8]. Herein, 𝑃 
𝐺𝑟𝑖𝑑 > 0 

means the SH purchases power from the local DISCO and 

𝑃 
𝐺𝑟𝑖𝑑 < 0 means the SH sells power to the local DISCO.  

    �́�𝑡
𝐷𝐼𝑆𝐶𝑂 = {

𝜋𝑡
𝐷𝐼𝑆𝐶𝑂               𝑃𝑡

𝐺𝑟𝑖𝑑 > 0

𝜑 × 𝜋𝑡
𝐷𝐼𝑆𝐶𝑂       𝑃𝑡

𝐺𝑟𝑖𝑑 < 0
, ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇     (8) 

The price of the transacted energy between two SHs is 

assessed based on the marginal cost of the installed DG in the 

power exporter SH; however, if there is no DG in the power 

exporter SH, the price is determined based on the marginal 

cost of the installed DG in the power importer SH. Moreover, 

if every SH has a DG, the price of electricity transaction is 

determined based on the average value of the generation costs 

of the DGs. The marginal cost of a DG can be determined 

using (9) [19]. 

             𝜋ℎ,𝑡
𝑁 =

𝜕(𝐶ℎ,𝑡
𝐹_𝐷𝐺 + 𝐶ℎ,𝑡

𝐸_𝐷𝐺)

𝜕𝑃ℎ,𝑡
𝐷𝐺 , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇              (9) 

The fuel cost function and carbon emissions function of 

every DG are quadratic polynomials presented in (10) and 

(11), respectively [19]. Herein, are the set of 𝑧1
𝐹 , 𝑧2

𝐹 , 𝑧3
𝐹  and 

𝑧1
𝐸 , 𝑧2

𝐸 , 𝑧3
𝐸 are the fuel cost coefficients and carbon emissions 



 

coefficients of the DG, respectively. Also, 𝛽 
𝐸 is the value of 

penalty for carbon emissions.  

𝐶ℎ,𝑡
𝐹𝐷𝐺 = 𝑥ℎ,𝑡

𝐷𝐺 × (𝑧1,ℎ
𝐹 × (𝑃ℎ,𝑡

𝐺 )
2
+ 𝑧2,ℎ

𝐹 × (𝑃ℎ,𝑡
𝐺 ) + 𝑧3,ℎ

𝐹 ) 

                                         ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇                                  (10) 

𝐶ℎ,𝑡
𝐸𝐷𝐺 = 𝑥ℎ,𝑡

𝐷𝐺 × 𝛽 
𝐸 × (𝑧1,ℎ

𝐸 × (𝑃ℎ,𝑡
𝐺 )

2
+ 𝑧2,ℎ

𝐸 × (𝑃ℎ,𝑡
𝐺 ) + 𝑧3,ℎ

𝐸 ), 

                                         ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇                                 (11) 
The value of the switching cost of the battery of a PEV is 

determined based on the value of total cumulative ampere-

hours throughput of the battery (𝜉 
𝑃𝐸𝑉) in its life cycle and the 

value of the initial price of the battery (𝑃𝑟 
𝑃𝐸𝑉). In fact, 

considering this cost term prevents the battery of the PEV 

from unnecessary switching that is harmful to its life span.  

                               𝐶ℎ
𝑆𝑊𝑃𝐸𝑉 =

𝑃𝑟ℎ
𝑃𝐸𝑉

𝜉ℎ
𝑃𝐸𝑉 , ∀ℎ ∈ 𝐻                         (12) 

B. Constraints  

1) Supply-demand balance  

The sum of power of DG, power of PV panels, power of 

battery of PEV, the transacted power with the connected SHs, 

and the transacted power with the DISCO through the grid 

must be equal to the load demand (𝐷 
𝐿) in every SH and at 

every time step of the operation period. Herein, the transacted 

power with the connected SHs is considered positive if the SH 

imports power and it is negative if the SH exports power.  

(𝑥ℎ,𝑡
𝐷𝐺 × 𝑃ℎ,𝑡

𝐷𝐺) + (𝑥ℎ,𝑡
𝑃𝐸𝑉 × 𝑃ℎ,𝑡

𝑃𝐸𝑉) + 𝑃ℎ,𝑡,𝑠
𝑃𝑉 + 𝑃ℎ,𝑡

𝐺𝑟𝑖𝑑 + ∑ 𝑃ℎ,𝑡,ℎ′
𝑁

 

ℎ′∈𝐻′

= 𝐷ℎ,𝑡
𝐿 , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇 , ∀𝑠 ∈ 𝑆            (13) 

2) Power limits of the diesel generator 

The maximum power limit (𝑃 
𝐷𝐺) and minimum power limit 

(𝑃 
𝐷𝐺) of every DG is presented in (14).  

           𝑥ℎ,𝑡
𝐷𝐺 × (𝑃ℎ

𝐷𝐺 ≤ 𝑃ℎ,𝑡
𝐷𝐺 ≤ 𝑃ℎ

𝐷𝐺) , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇          (14) 

3) Minimum up/down time limits of the diesel generator  

The duration that the DG is continuously “on” (∆𝑡 
𝐷𝐺_𝑂𝑁) 

and “off” (∆𝑡 
𝐷𝐺_𝑂𝐹𝐹) must be more than the rated minimum up 

time (𝑀𝑈𝑇 
𝐷𝐺) and minimum down time (𝑀𝐷𝑇 

𝐷𝐺).  

                      ∆𝑡ℎ
𝐷𝐺_𝑂𝑁 ≥ 𝑀𝑈𝑇ℎ

𝐷𝐺 , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇                 (15) 

                      ∆𝑡ℎ
𝐷𝐺_𝑂𝐹𝐹 ≥ 𝑀𝐷𝑇ℎ

𝐷𝐺 , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇                (16) 
4) Power limits of the battery of the PEV 

The battery of the PEV can act as a load or generator by 

being charged or discharged, respectively; however, the power 

of battery of PEV must be in the rated range. Herein, 𝑃 
𝑃𝐸𝑉 is 

the rated power of battery of PEV.  

    𝑥ℎ,𝑡
𝑃𝐸𝑉 × (−𝑃ℎ

𝑃𝐸𝑉 ≤ 𝑃ℎ,𝑡
𝑃𝐸𝑉 ≤ 𝑃ℎ

𝑃𝐸𝑉) , ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇       (17) 

5) Depth of discharge limit of the battery of the PEV 

In order to prolong the life time of the battery of PEV, the 

battery must not be discharged more than the allowable DOD. 

Moreover, the battery has a definite capacity that cannot be 

charged more than that.  

            𝐷𝑂𝐷ℎ
𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶ℎ,𝑡

𝑃𝐸𝑉 ≤ 100, ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇           (18) 
6) Disconnection of the PEV from the SH 

This constraint indicates that the PEV is being used by its 

driver and the PEV is no longer connected to the SH in this 

interval (∆𝑡𝐷𝑒𝑝−𝐴𝑟𝑟
 ), as can be seen in (19).  

                    𝑥ℎ,𝑡
𝑃𝐸𝑉 = 0, ∀ℎ ∈ 𝐻, 𝑡 ∈ {∆𝑡𝐷𝑒𝑝−𝐴𝑟𝑟

 }                   (19) 

7) Full charge constraint for battery of PEV before departure  

By holding this constraint, the owner of the PEV is 

confident that the PEV will have full charge at the desirable 

time (𝑡𝐷𝑒𝑝
 ) and ready to be used.  

                           𝑆𝑂𝐶ℎ,𝑡𝐷𝑒𝑝
 

𝑃𝐸𝑉 = 100, ∀ℎ ∈ 𝐻                              (20) 

8) Maximum accessible power from a connected SH   

The power that the SH can import from a connected SH 

(𝑃 
𝑁) must be less than the available power of connected SH 

(𝑃 
𝐴) at every time step of the optimization period. 

                 𝑃ℎ,𝑡,ℎ′
𝑁 ≤ 𝑃ℎ′,𝑡

𝐴 , ∀ℎ ∈ 𝐻, ∀ℎ′ ∈ 𝐻′, ∀𝑡 ∈ 𝑇              (21) 

where,  

𝑃ℎ′,𝑡
𝐴 = {

𝑥ℎ′ ,𝑡
𝐷𝐺 × (𝑃ℎ′

𝐷𝐺 − 𝑃ℎ′,𝑡
𝐷𝐺 ) + 𝑃ℎ′

𝑃𝐸𝑉 − 𝑃ℎ′,𝑡
𝑃𝐸𝑉   𝑥ℎ′ ,𝑡

𝑃𝐸𝑉 = 1

𝑥ℎ′,𝑡
𝐷𝐺 × (𝑃ℎ′

𝐷𝐺 − 𝑃ℎ′,𝑡
𝐷𝐺 )                               𝑥ℎ′ ,𝑡

𝑃𝐸𝑉 ≠ 1
(22) 

Based on (22), if the battery of the PEV of a connected SH 

is in discharging status (𝑥ℎ′,𝑡
𝑃𝐸𝑉 = 1), the battery has available 

capacity about (𝑃ℎ′
𝑃𝐸𝑉 − 𝑃ℎ′ ,𝑡

𝑃𝐸𝑉) to help the SH. Also, if the DG 

of a connected SH is in “on” status, the DG has available 

capacity about (𝑃ℎ′
𝐷𝐺 − 𝑃ℎ′,𝑡

𝐷𝐺 ) to help the SH.  

IV. NUMERICAL STUDY 

All the simulations are done in MATLAB environment 

using the Intel Xeon Sever with 64 GB RAM. Fig. 5 illustrates 

the configuration of the case study that include five SHs with 

different set of sources including PV panels installed on the 

roof of the SH, PEV, DG, and electrical distribution grid. In 

addition, every SH has connections to some of the other SHs. 

The technical data for different types of the DGs are presented 

in TABLE I. Furthermore, the value of other parameters of 

system and problem are presented in TABLE II. Fig. 6 shows 

the electricity price proposed by the local DISCO in every 

time step (five minutes) of the operation period (one day).  

The load demand patterns of SHs 1-5 are shown in Figs. 7, 

9, 11, 13, and 15, respectively. Moreover, SH 4 and SH 5 have 

PEV of type 1 and type 2, respectively. In addition, the power 

patterns of the PV panels related to SHs 2-5 are illustrated in 

Figs. 9, 11, 13, and 15, respectively.  
 

A. Without energy scheduling and non-cooperative energy 

scheduling 

TABLE III presents the operation cost of every individual 

SH and the set of SHs without energy scheduling of SHs 

(scenario 1) and with non-cooperative energy scheduling 

(scenario 2). For the first scenario, the power of PV panels are 

considered as the negative demand and then it is added to the 

load demand of every individual SH. In addition, at every time 

step, the extra power of every SH is directly delivered to the 

grid and sold to the local DISCO. As can be seen, the total 

operation cost of the set of SHs for the first and second 

scenario are about $66.01/day and $43.59/day, respectively. 

B. Cooperative distributed energy scheduling  

The daily operation cost of the set of SHs and every 

individual SH, and also the optimal schedule of energy 

resources of SHs in the cooperative distributed energy 

scheduling (scenario 3) are presented in TABLE III and Figs. 

7-16, respectively. As can be seen, the operation cost of every 

SH is reduced and SH 1 not only removes its operation cost, 

but also it makes income. Moreover, the total operation cost of 

the set of SHs is decreased to about $30.82/day.  



 
Fig. 5. The configuration of the system under study. 

TABLE I 
TECHNICAL DATA OF DIFFERENT TYPES OF THE DGS.  

Parameter  Type 1 Type 2 Type 3 

𝑧1
𝐹  (¢/kWh2) 0.00324 0.00243 0.00491 

𝑧2
𝐹  (¢/kWh) 3.96 9.94 7.85 

𝑧3
𝐹  (¢) 0 0 0 

𝑧1
𝐸 (kg/kWh2) 0.0007 0.0008 0.0008 

𝑧2
𝐸 (kg/kWh) 0.39 0.94 0.61 

𝑧3
𝐸 (kg) 0 0 0 

𝑃 
𝐷𝐺 (kW) 5 5 5 

𝑃 
𝐷𝐺 (kW) 20 10 15 

𝑀𝑈𝑇 
𝐷𝐺 (min) 10 10 10 

𝑀𝐷𝑇 
𝐷𝐺 (min) 10 10 10 

𝐶 
𝑆𝑇𝑈_𝐷𝐺 (¢) 100 100 100 

𝐶 
𝑆𝐻𝐷_𝐷𝐺 (¢) 100 100 100 

 

TABLE II 
VALUE OF THE PARAMETERS OF THE SYSTEM AND PROBLEM.  

𝑛𝑡 288 𝑃𝑇𝑦𝑝𝑒 1
𝑃𝐸𝑉  (kW) 10 𝑆𝑂𝐶𝑡𝐴𝑟𝑟 𝑃𝐸𝑉 (%) 50 

𝑛𝜏 12 𝑃𝑇𝑦𝑝𝑒 2
𝑃𝐸𝑉  (kW) 15 ∆𝑡𝐷𝑒𝑝−𝐴𝑟𝑟

  9-10, 16-
17  

𝜑 0.5 𝐶𝑎𝑝𝑇𝑦𝑝𝑒 1
𝑃𝐸𝑉  (kWh) 50 𝑃𝑟 

𝑃𝐸𝑉 (¢) 200,000 

𝛽 
𝐸 (¢/kg) 1 𝐶𝑎𝑝𝑇𝑦𝑝𝑒 2

𝑃𝐸𝑉  (kWh) 75 𝜉 
𝑃𝐸𝑉 (Ah) 10,000 

𝑃2
𝑃𝑉 (kW) 10 𝐷𝑂𝐷 

𝑃𝐸𝑉 (%) 20   

𝑃3
𝑃𝑉 (kW) 10 𝑆𝑂𝐶𝑡𝐷𝑒𝑝 𝑃𝐸𝑉 (%) 100   

 

 
Fig.  6. The electricity price proposed by the local DISCO. 

TABLE III 
THE OPERATION COST OF EVERY SH AND THE SYSTEM ($/DAY). 

Energy scheduling SH 1 SH 2 SH 3 SH 4 SH 5 Total 

Without energy 

scheduling 
10.21 11.47 14.54 13.38 16.38 66.01 

Non-cooperative -3.54 11.47 13.76 13.38 8.52 43.59 

Cooperative 
distributed 

-4.66 9.52 10.20 10.55 5.21 30.82 

As can be seen in Fig. 7, the DG of SH 1 is shut down in 7th 

time step and the needed electricity is purchased from the 

local DISCO between the 7th-78th time steps of the operation 

period. For the rest of the operation period, SH 1 starts up its 

DG, supplies its demand, and exports its extra power to the 

connected SHs and the local DISCO, as can be seen in Figs. 7 

and 8. As can be seen in Fig. 10, SH 2 purchases its needed 

power from the local DISCO just between 7th-78th time steps 

and in the other time steps, it purchases most of the demanded 

electricity from the connected SHs. In addition, SH 2 never 

sales electrical energy to the connected SHs or the local 

DISCO. As can be seen in Fig. 11, the DG is turned off and on 

several times over the operation period, since this DG is the 

most expensive and pollutant DG. As can be seen in Fig. 13, 

the battery of PEV is charged between 121th-132th and 205th-

216th time steps because the PEV has lost energy after it has 

been used by the driver. However, the battery of PEV does not 

have any charging and discharging pattern. As can be seen in 

Fig. 15, SH 5 starts up its DG in 103th time step and keeps it 

“on” until 282th time step; however, in some periods, sets the 

power of the DG at minimum power limit and avoids shutting 

it down. In addition, the battery of the PEV in SH 5 has the 

same charging patterns as SH 4.  

 
Fig. 7. The demand level and optimal power of energy sources in SH 1. 

 
Fig. 8. The optimal transacted powers between SH 1 and the connected SHs 

and local DISCO. 

 
Fig. 9. The demand level and optimal power of energy sources in SH 2. 

 
Fig. 10. The optimal transacted powers between SH 2 and the connected SHs 
and local DISCO. 



 

 
Fig. 11. The demand level and optimal power of energy sources in SH 3. 

 
Fig. 12. The optimal transacted powers between SH 3 and the connected SHs 
and local DISCO. 

 
Fig. 13. The demand level and optimal power of energy sources in SH 4. 

 
Fig. 14. The optimal transacted powers between SH 4 and the connected SHs 
and local DISCO. 

 
Fig. 15. The demand level and optimal power of energy sources in SH 5. 

 
Fig. 16. The optimal transacted powers between SH 5 and the connected SHs 

and local DISCO. 

V. CONCLUSION 

In this study, the stochastic MPC as the adaptive and 

dynamic optimization technique was applied in the 

cooperative distributed energy scheduling problem of the set 

of SHs with different sources of energy to address the 

uncertainty and variability issues of the power of PV panels.  

After simulating the problem, it was observed that 

cooperation of the SHs with one another in the distributed 

energy scheduling problem result in considerable cost saving. 

In fact, the reason for this achievement is related to the 

cooperation of the SHs for sharing their energy sources 

including DG, PV panels, and the battery of the PEV.  

A suggestion for the future work, is applying a multi-time 

scale stochastic MPC with short and long time step durations 

to simultaneously have vast vision for the optimization time 

horizon and small scale resolution for the problem variables to 

improve the performance of each battery, since the batteries 

had limited performance because of short time scale of MPC. 
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